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Abstract

The objective of this project is to develop and demonstrate autonomous landing on a ship-

deck platform using computer vision techniques. Such a task is primarily done by human

pilots and which involves bias and accuracy difference. The work I show in this report

involves a fundamental understanding of how vision can help achieve autonomy in this

problem, what components are needed to implement it, and the results of integration of

software with aircraft controls. The ship-deck motion dataset used is available for public

use and meant for research purposes.

A quad rotor UAV with the required hardware is designed for the experimental testing

of vision-based landing methods. A fiducial-based vision system is designed for detection

and tracking of the moving ship-deck platform. A “tracking” controller is set up to always

direct the UAV to hover directly above the landing position. During this stage, the UAV

collects observations about attitude of the platform and its time-series. This data is used

to decide optimal time for initiating landing protocol.

Experiments are conducted with static and sinusoidal motions to quantify the attitude

tracking performance. The results show that it is possible to autonomously land on a

ship-deck using computer vision alone. This type of vision-aided landing opens a window

towards emulating the best of human training and cognition, without its burden of fatigue

and divided attention.
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Chapter 1

Introduction

1.1 Naval Helicopters

Ship deck landing is a risky, demanding helicopter maneuver which involves reaching the

deck despite the heaving and rolling of the ship, airwake perturbances, and often stressful

contexts. This motion could exceed the vertical agility of the operating helicopter, exceed

the landing gear or engine torque limits, or increase the risk of a tail strike.

Attempts have been made by the government to install external devices on the ship that

aid in landing of the helicopter or aircraft in general. We look at some of these methods

that are currently in use to get a brief idea about touchdown on moving ship.

1.2 Advancements in Ship-Deck Landing

• Advanced Arresting Gear (AAG): The U.S. Navy has implemented Advanced

Arresting Gear (AAG) systems on its aircraft carriers. AAG uses an electro-magnetic

energy absorption mechanism to provide a more controlled and adjustable landing

experience for aircraft. Below is an image depicting the same. See Figure 1.1

• Beartrap: Helicopters are now a mainstay of naval operations, but only when the

conditions on flight deck are favorable. In bad-weather or high sea-states, they

remain grounded. In the late 1950s the Royal Canadian Navy invented a helicopter

hauldown and rapid securing (HHRSD) device, known as beartrap. See Figure 1.2

1



Chapter 1. Introduction 2

Figure 1.1: F/A-18C landing on aircraft carrier, showing arresting cable

The bear trap system improves helicopter ship-deck landing in two ways:

1. It helps to keep the helicopter aligned with the center of the ship-deck when the

helicopter is hovering over it.

2. It helps handling of the landed helicopter by securing it to the deck and preventing

it from falling over

Figure 1.2: Helicopter being hauled down by a beartrap to land on the deck
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Today, to enhance the safety and proficiency of ship-based aviation, there has been a

growing emphasis on simulator-based training for pilots and deck crew, allowing them to

practice complex landing maneuvers and emergency procedures in a controlled environ-

ment.

With the rise of unmanned aerial vehicles (UAVs), an autonomous ship-deck landing sys-

tem is necessary for use of these aircrafts in naval aviation. These form the motivation

behind the research to develop a vision-based autonomous system for vertical landing on

ship-deck. The vision based approach to autonomously align the aircraft with the ship-

deck seeks to replace the tethered wire approach of beartrap.

1.3 Can Computer Vision help?

In the field of Aerospace, Vision has found use in analysis of satellite images, inspection of

aircraft parts, and in star trackers and earth sensors for satellite estimation determination

and navigation.

Computer Vision algorithms analyse images and detects primitives such as color, lines and

contours and uses them to detect more complicated shapes and objects. These detection

techniques have been further improved over time to include Neural Networks (NN) for

more complex detection at better accuracy. OpenCV is a common software that is used

world-wide for executing and implementing computer vision algorithms on images. I have

used the same software for image analysis.

Object Pose Estimation is one of the major revolutionary use-case that made Computer

Vision so popular in Robotics.

Pose is a 6-degree state (3d position and 3d orientation) of an object denoted as [X,Y,Z,ϕ,θ,ψ].

Figure 1.3: Detection and Pose Estimation of household objects
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Observing the above image, one can see ”bounding box” around each object that has been

detected by the algorithm. 3 axes also emerge from the center of this box which essentially

describes the 3d orientation of that particular object with respect to camera frame. Hence

information about location and orientation is now known.

Below is an image of an ArUco marker (Refer Section 4 for more clarification) of id 203

(for unique identification) that can be easily detected and analysed for pose estimation

due to its unique id and pre-defined orientation.

Figure 1.4: ArUco Marker ID: 203 Detected with XYZ Axes plotted

1.4 Vision for Ship-Deck Landing

The use of Vision for Landing is a popular area. As described above, by detecting objects

and patterns in images, we can further analyse image to calculate pose of the detected

feature. Once the pose is known, the UAV can be guided to that location by providing

waypoints and landing can be safely achieved. The below figure depicts the same.

Figure 1.5: Helipad detection using Computer Vision for Landing
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1.5 Autonomous Ship-Deck Landing

Now that I have established vision plays quite an important role for landing estimation,

I further lay down the overview of the pipeline to be followed for initiating autonomous

landing.

Figure 1.6: Protocol for Autonomous Landing

Issue arises due to continuously changing orientations and lateral motion of the landing

platform. This would make touchdown impossible to execute safely as the platform with

some angular velocity could disrupt safe landing and the UAV could topple. However, at

one instant the orientations and motion would be within a certain ”safe” threshold for a

small duration during when touchdown can be achieved. The main idea is to initiate land-

ing at a time when the landing platform is momentarily stationary or considered ”safe”

for landing.

It is quite important to decide this threshold for ”safe” touchdown, the duration when

landing can be achieved. This information can be extracted after analysis the motion of

platform. This motivates us to know about sea conditions in which the ship is moving and

the ship-wave dynamics involved. This is covered in the following section.



Chapter 2

Ship-Deck Motion

2.1 Types of Ship-Deck Motion

I provide a description of different types of ship-deck motion and sea-states, followed by a

description of the deck motion dataset in this section.

Ship-deck motion is categorized into six types: 3 translations and 3 rotations. The trans-

lational motion along the longitudinal axis of ship is called surge, along the lateral axis

is called sway and along the axis perpendicular to these axes is called heave, which is the

raising or lowering of the ship-deck. Heave motion is of quite crucial in deciding landing.

The rotational motions along the longitudinal axis is called roll, along the lateral axis is

called pitch, and along the axis perpendicular to these is called yaw.

Figure 2.1: 6 Degress of Freedom in Ship-Deck Motion

6
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2.2 Sea States

Sea States is a code from 0 to 9 that describes the roughness of sea taking into account wave

height and wind velocity. The Douglas sea scale was devised to quantify the sea condition

and help decide whether it is safe or unsafe for regular operations. Ship-deck motion is

stochastic as the exact forces applied by sea-waves to the ship cannot be predetermined.

However, statistical properties of these forces can be inferred from available datasets.

Table 2.1: Douglas Sea-scale

Sea State Wave Height Characteristic

0 0 m Calm Glassy Sea
1 0-0.1 m Calm Rippled Sea
2 0.1-0.5 m Smooth Sea
3 0.5-1.25 m Slight Sea
4 1.25-2.5 m Moderate Sea
5 2.5-4 m Rough Sea
6 4-6 m Very Rough Sea
7 6-9 m High Sea
8 9-14 m Very High Sea
9 > 14 m Phenomenal Sea

2.3 SCONE Dataset

Systematic Characterization of the Naval Environment (SCONE) dataset is a publicly

available dataset that models ship motion data. It is important to note that this dataset

is prepared in a simulated environment using MATLAB and simulink. The SCONE

data offer three levels of deck motion intensity in the heave and roll axes.

2.3.1 SCONE Data Description

Every file within the SCONE database contains a set of data which describe different

ship deck motion with respect to roll intensity and heave rate intensity of the ship. The

roll intensity and heave rate intensity of the ship are described as ”low”, ”moderate“ and

”high“ conditions. For each condition, five simulations (referred to as ‘realizations’) were

executed with differing, random wave phases. Thus, there are five 30- minute time histories

for each deck motion condition (sampled at 50Hz).
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Each file are MATLAB files with 19 columns of data and a row for each time step.

The contents in a file are explained below:

Table 2.2: SCONE Dataset Description

Row No. Quantity Dimension

1 Time, 0.0 at start of recording period sec
2-4 X, Y, Z coordinate of the ship’s flight deck reference point ft
5-7 Roll, Pitch, Yaw angle - Euler rotation about the X, Y, Z axis deg
8-10 Surge, Sway, Heave velocities in global coordinate system ft/sec
11-13 Roll, Pitch, Yaw rates in ship-fixed coordinate system deg/sec
14-16 Surge, Sway, Heave acceleration in global coordinate system ft/sec2

17-19 Roll, Pitch, Yaw acceleration in ship-fixed coordinate system deg/sec2

Table 2.3: SCONE Dataset Nomenclature

Wave Characteristics (m) Douglas Sea State Ocean Waves SCONE levels

0.0 to 0.5 0,1,2 Low 1
0.5 to 4.0 3,4,5 Moderate 2
4.0 to 6.0 6 High 3

SCONE dataset files are named in the following fashion: ”SCONE DXR Y.mat” or

”SCONE DXH Y.mat”. Here X varies from 1 to 5 showing different experiments con-

ducted for making dataset and Y varies from 1 to 3 to depict the intensity level of either

the H (Heave) or R (Roll).

2.4 Ship-Deck Hardware used for Landing

Figure 2.2: Under-actuated model of the Stewart Platform
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A plate is attached to the end-effectors of these three actuators which moves as per the

net motion imparted to it.

Another plate (big enough for the quadrotor to land) is attached on top of this plate. This

custom ”big” plate has a ArUco marker (Refer Section 3 for more clarification) attached

on top of it. This marker is detected by the drone vision system and directs itself towards

it for safe landing.

Figure 2.3: Drone Landing Platform built in the lab

The platform was provided to me to test my experiments. I have just used it and not

designed it. I have performed my tests on this under-actuated (as only roll, pitch and heave

motions are ideally possible) platform for demonstrating landing of my UAV autonomously

using my algorithm while the platform simulates ship motion.

2.5 Hardware Limitations

Limitations currently in the platform are:

• The system as stated above is under actuated due to which 3 of the motions (surge,

swell and rise) cannot be tested.

• Heave motion cannot be tested due to the limited stroke length of the actuator.

Currently, these linear actuators have a 6 inch stroke meaning they can move a total

of 15 cm. Heave coupled with roll and pitch simultaneously constraint the range

of motion more in the z direction. Hence testing for heave platform could not be

conducted.
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Specifications of the UAV Used

3.1 Overview

In this section, I discuss about the VTOL UAV I used to collect experimental results.

The UAV was assembled and provided to me by the Helicopter lab members.

3.2 Vision System

The Quadrotor is attached with a Vision system to be able to take image feed as input

for analysing it further. This vision system is a camera attached to the base of the drone.

The camera is Logitech C922 HD Pro Webcam. It is equipped with automatic light cor-

rection, it adjusts to the current lighting conditions, producing bright, contrasted images,

even if the environment is currently a dim setting. Therefore, parameters like exposure

and white balance would be tuned accordingly. Hence it fits for this project.

Below mentioned are the relevant specifications of the camera:

• Resolution: 1080p/30fps or 720p/30fps.

• Field of View: 78°

10
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Figure 3.1: Vision System used in the drone

3.3 Companion Computer

A Onboard Computer is used on the vehicle that is primarily used for carrying out

processor-intensive tasks like analysing images. The computer used is Raspberry Pi 4

model B. Specifications are as below:

1. RAM - 4GB DDR4

2. 1 USB 3.0 port

3. Operating System (OS): Linux Server

Its primary purpose is handle detection and pose estimation of markers. Its secondary

purpose is data logging of flight variables (.rosbag) for debugging and post-processing.

Different processes running on top of the OS are used for executing different tasks in

parallel. These tasks are reading and processing the data from the camera sensor, executing

algorithm commands, managing communication with the flight controller, and recording

flight data to non-volatile memory for post-processing.

Figure 3.2: Raspberry Pi Computer used for Online processing of real-time data
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3.4 Assembled UAV

In the picture attached, all the avionics and necessary components needed for flight are

attached. Along with this the onboard computer and the vision system is also attached.

Figure 3.3: Assembled UAV

The camera is attached facing downward to capture the marker in head on position. Since

previously I transformed the Marker Frame to coincide with the Image Frame, the frames

coincide when the drone is stationary and aligned with the marker. This is useful in Roll

Pitch estimation algorithm.

Some standard specifications:

• Flight Computer: PixHawk Cube Orange

• PX4 Build Version: 1.12.0

• GPS: here3

• Battery: LiPo 6S 3300 mAh

• Motor: T-Motors MN4006-23; 380kv (X4)
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Fiducial Marker & Vision System

In this section, I describe how the vision system is integrated with drone to take in the

desired input feed as required. This is followed by a introduction to Fiducial markers which

help in guiding the drone to itself by letting the drone extract its pose. The customisation

of the library used here is a part of my estimation algorithm.

4.1 Camera System Used

As described above, the camera is Logitech C922 HD Pro Webcam operated at a resolution

of 720p and 30fps.

4.1.1 Camera Calibration

Since the camera is operated to capture 3d objects but outputs a 2d image, this results

in a mapping. Such a 3d to 2d mapping requires calibration of the lens parameters for

correct and proportional projection of the input image onto image plane. This can be

visually understand by looking at the figure below:

4.1.2 Integration with ROS

Since the camera is an independent system capturing the feed and the drone has ROS

server running on its companion computer, they need to communicate through a common

channel inorder to reduce latency.

13
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Figure 4.1: Pinhole camera model

I have used ROS (Robot Operating System) for calibrating the camera. ROS provides

libraries to efficiently interact with the video feed system. In the backend, the video feed

with the set parameters will be available on the ROS server for other processes to use (like

OpenCV). Below is the code that takes in values of the necessary arguments as discussed

above.

rosrun camera_calibration cameracheck.py

--size 9x7

camera:=/usb_cam

image:=/usb_cam/image_rect

Figure 4.2: Checkerboard calibration

After calibration, we get the Camera Matrix that specifies where the coordinates of

the optical centre (in pixels) and the focal length in X and Y directions (in pixels). The

camera model assumed is pinhole which is not the case generally, hence we also obtain a

distortion matrix to cancel the effect of distortion on the final image analysis.
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Figure 4.3: Obtained Camera Parameters

4.1.3 Camera Focus

Different autofocusing methods exist for many cameras today. The camera used for this

project has an autofocus feature. Autofocus can indeed pose challenges in robot vision

applications, especially in dynamic environments or when dealing with varying distances

between the camera and objects of interest. Here are some common problems associated

with autofocus in robot vision:

1. Speed: Traditional autofocus mechanisms may not be fast enough to keep up with

rapid changes in the scene, leading to delays in image acquisition and processing.

2. Accuracy: Autofocus algorithms may struggle to accurately determine the optimal

focus point, particularly in scenes with complex or cluttered backgrounds. This is

one of the critical reason for turning off autofocus as it hinders with clear input

images which an lead to possible poor detection (due to loss of resolution in blurry

images) and eventually failing of the pipeline.

Due to the above reasons, autofocus is turned off.

4.2 Fiducial Markers

4.2.1 ArUco Marker

ArUco markers are visual markers used in computer vision for augmented reality applica-

tions. These are square or rectangular patterns with a black border and a unique binary
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interior pattern. They are simpler in design compared to fractal markers but still offer

good detection reliability. ArUco markers are widely used for their simplicity and ease

of detection. They can be quickly recognized in images or video frames using standard

computer vision algorithms, making them suitable for real-time applications.

While ArUco markers offer good detection reliability under normal conditions, they may

be more susceptible to occlusion and partial obstruction due to their simpler design. As

the drone starts to lower its height during landing on the platform, the visibility of ArUco

marker reduces and if even one corner goes outside frame then detection fails which leads

to loss in waypoint generation. Hence, until the drone lands, the marker should be visible

all time. This is where fractal markers help.

4.2.2 Fractal Marker

Fractal markers are a new concept of marker, which is composed of several fiducial square

markers of different size inside. Unlike traditional fiducial markers, the structure of this

marker can be detected from a large number of distances, as well as solve problems of

partial or total occlusion of the marker.

The features of this marker, together with the tools developed make it a powerful tool

for camera pose estimation in a large number of applications such as robots, unmanned

vehicles and augmented reality.

Fractal Marker is integrated inside ArUco’s libraries, allowing a fast, robust and precise

detection of the markers. ArUco is a widely used OpenSource library for detecting squared

fiducial.

4.3 Pose Estimation

Fractal Marker System uses ArUco to perform markers detection. The process of calling

ArUco is completely transparent to the user, and carried out using the FractalDetector

class.

If the extrinsic parameters of the camera are known (camera matrix and distortion coef-

ficients obtained by calibration), then we can calculate the relative position of the fractal

marker and the camera. The system will give you the rotation and translation vectors
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Figure 4.4: long-range stable detection under occlusion

(Rvec and Tvec), which represent the transformation matrix from the marker frame to

the camera frame.

Figure 4.5: General pipeline of pose esitmation for an ArUco marker

4.3.1 Understanding Rvec and Tvec

rvec refers to the rotation vector, which is a compact representation of a rotation in

three-dimensional space. Instead of using matrices to represent rotations (such as rotation

matrices or Euler angles), the rotation vector uses a single vector. Commonly known as
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the axis angle representation.

r = [a1, a2, a3];
√
a12 + a22 + a32 = θ

Rotation Angle (θ): This is the magnitude of the rotation, typically measured in radians.

It indicates how much the object is rotated about the axis of rotation.

Rotation Axis (e): This is a unit vector (a vector with a length of 1) that represents the

axis of rotation. The direction of this vector determines the direction of the axis, and its

magnitude gives the rotation in radians.

rvec requires only three parameters compared to the three angles needed for Euler angles,

making it more compact and efficient for storage, computation, and transmission. rvec

representations are less prone to singularities like gimbal lock, ensuring numerical stability

and robustness.

Figure 4.6: Axis-Angle representation

4.4 Euler Lock and Quaternions

4.4.1 Gimbal Lock and its prevention

Gimbal lock is a mathematical problem that arises only when Euler angles (Roll/Pitch/Yaw)

are used to represent 3D orientation. More specifically, it occurs when the X-axis of points

straight up or straight down, i.e. Pitch = +-90 deg. In this orientation, the Roll and

Yaw angles will become mathematically unstable. The phenomenon is called gimbal lock

because the Roll and Yaw axes of a gimbal are ”locked” together in this orientation; they

are both affected by a rotation around the X-axis of the rotating body.



Chapter 4. Fiducial Marker & Vision System 19

ϕ, θ and ψ are euler angles which is the input to our platform. Hence, I was converting

marker orientation from quaterion to euler since, I was able to directly map the difference

and determine if platform is suitable for landing. However dealing with them is not

advisable, so I wrote the algorithm to work in axis-angle notation.

4.5 Transformation from Marker Frame to Image Frame

In OpenCV, the image has a ESD (East-South-Down) frame orientation. However the

Fractal library which detects the marker, presents the marker pose in ENU (East-North-

Up) frame orientation.

However for accurate and simple conversions, I wrote a function in the FractalDetector

class to change the orientation of the marker from ENU to ESD (Image frame). This

would help understand the intuition behind Roll Pitch estimation algorithm.

The algorithm calculates the orientation axes using detected points in order. However, if

we tweak the ordering of the detected points that go into the SolvePnP algorithm, we

can get the desired orientation.

Figure 4.7: [Left]: Axes in ENU frame before conversion. [Right]: Axes in ESD frame
after conversion
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4.6 Discussion

Below are some plans that need to be done for improving overall performance:

• Upgrade to a better camera system with 720p/60fps so that the frequency of the

pipeline increases.

• Currently, the camera is rigidly attached to the drone. Attach the camera to a

gyroscope so that any perturbations faced by the drone mid-air do not induce error

in analysis. As can be seen in the figure below, even a small jerk in camera (due

to random instability in mid-air) will magnify the position estimate by a magnitude

of Z times the perturbation. Where Z is the current distance between object and

camera (assuming camera is downward facing (nadir)).

Figure 4.8: Magnification is proportional to the distance between image and object
plane
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Roll and Pitch Estimation

5.1 Motivation

I present a method to estimate the roll and pitch motion of a vessel using solely vision

equipment without requiring any vessel-specific parameters or models. The motivation is

that many marine applications require precise and safe landing for the vessel to avoid any

damage to the aircraft. Here I have not introduced heave motion and tested only on roll

motion (due to actuator limitation)

5.2 Algorithm for Roll and Pitch Estimation

To talk about the algorithm, it is quite straightforward. The UAV is hovering just above

the platform and we want it to land on. After getting a few observations, the algorithm

decides when to land such that it does not topple.

At each iteration of algorithm, given the detection is successful, the Fractal library extracts

pose of the detected marker and conveys it to the algorithm. The algorithm calculates the

angle deviation of the platform with respect to the UAV and outputs the angle. This angle

if falls within a threshold directs that the platform is suitable at this moment to land and

so the UAV moves down. This is repeated at each time step and if the angle calculated

falls above the threshold, then the UAV is not commanded to lower down instead just

hover at the location.

21
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Figure 5.1: [Left]: UAV hovering above the marker to collect observations [Right]:
Camera feed conversion

Algorithm 1 Roll Pitch landing psuedo code

Require: Marker Detection is successful in current frame
Ensure: UAV is stable and camera facing completely down

while Marker Pose is updated do
Rot←Marker Pose.Rvec
Tran←Marker Pose.Tvec

Angle←
√
Rot[0]2 +Rot[1]2 +Rot[2]2

if Angle ≤ abs(Threshold) then
Intiate Landing ← True

else
Intiate Landing ← False

end if
end while

The threshold for toppling is set to around 12° through experimentation for this particular

frame.

This algorithm reduced to a simple angle check as during detection I have already trans-

formed the marker axes to coincide with the camera image axes. Due to this modification,

I just need to calculate the angle from the Rvec vector and check if that falls below the

threshold.
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5.2.1 Proof of Concept

I am now going to state down reasons why this algorithm would not fail for any pattern

of roll and pitch signals given.

Assuming that currently the platform is exhibiting only roll and pitch motions, we can

make a few deductions based on this:

1. At any instant, when the pose is calculated and returned in axis-angle format, then

the axis will always lie in the same plane as that camera frame (given camera is

horizontal and stable throughout).

2. As the axis lie in the plane parallel to the camera frame, the angle that is calculated

is precisely the deviation of the platform from the horizontal plane. This is what we

need to set the threshold on.

Hence, the algorithm works in this case. During touchdown the angular velocity with which

the platform is exhibiting motion can also be checked to ensure safe and less impactful

landing. However, the ship data that I used for demonstration is of quite low-frequency;

around 0.2 to 0.3 Hz. The command to initiate landing runs at 25 Hz, nearly 100 times

faster. Hence, there should not be any problem.

5.3 Protocol for Safe Landing

The UAV is lowered by generating a waypoint with Z coordinate reduced by 0.02m keeping

X and Y same. As the flight controller module runs at approximately 50Hz, reducing height

by 0.02m results in a smooth execution.

This method is straightforward. I am calculating the position setpoint and sending it to

the UAV from the companion computer.

However, here the accuracy can be improved further by leveraging the communication

protocol of the UAV system. I have discussed this point in Sec 5.5.

Below, is the algorithm for landing once Initiate Landing ← true
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Algorithm 2 Landing Protocol

Require: Initiate Landing ← True
Ensure: Current Position is fetched from UAV
Set Pose← 0, 0, 0
Curr Pose← 0, 0, 0
while UAV.Current Pose = Updated do

Curr Pose← UAV.Current Pose
Set Pose.X ← Curr Pose.X
Set Pose.Y ← Curr Pose.Y
Set Pose.Z ← Curr Pose.Z − 0.02
Publish(Set Pose) to UAV
if Landed = true then

EXIT
else

Continue
end if

end while

5.4 Results

I tested my algorithm for different orientations of the platform as described below.

5.4.1 Experiment 1: Sudden Discrete Change in Elevation

Figure 5.2: [Left]: Platform at 22° elevation from horizontal [Right]: Platform at 0°
elevation from horizontal conversion
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This is a simple experiment where the platform is initially at an elevation of 20 - 25 ° from

the horizontal. The UAV starts hovering above the marker and takes in observations. As

the current angle is above the threshold set, the UAV would not land and rather hover i.e.

Initiate Landing ← false. Immediately I reduce the elevation to 0 °. Now the algorithm

sets Initiate Landing ← true and drone starts to land. Below are the plots demonstrating

the same.

Below are the results attached:

Here we see that Marker V isible variable value changes from 0 to 1 as soon as marker is

visible.

Figure 5.3: Initiate Landing variable

Here we see the angle recorded by the drone. Notice the 5° offset.
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Figure 5.4: Platform Orientation as recorded by Drone

Here we see that as soon as percieved angle changes from 30° to 5°, the drone starts landing

and we can see the change in z position (green curve). Note that the Z value is in negative

as the UAV follows NED notation in which Z is positive downwards. Hence ascent results

in a negative value and descent in a positive.

Figure 5.5: Landing trajectory as marked by the green curve
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5.5 Experiment 2: Ship Roll motion on the platform

This experiment would be having continuous ship data simulated on it. Here, the ship

roll data would be added onto the platform. Note that the maximum roll is around 10°.

Unfortunately while hovering the drone crashed brutally breaking the leg and propeller

of the drone and due to lack of available hardware, experiment was not performed. This

experiment would hopefully be done until the presentation date and I would have the

results for this by then.

Figure 5.6: SCONE D2R 3 File of Dataset

However, I have set the landing threshold for angle to be around 5° considering the roll

rate and angle effect during touchdown.

Below is the input to the platform:
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Figure 5.7: Input Roll to the Platform

I was able to collect what the drone is perceiving the ship motion as so as to give us an

idea of efficiency. Here is that plot:

Figure 5.8: Comparison between Actual and Perceived Platform Angle
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5.6 Improving Performance

This is section is quite important to run the algorithm at high frequency and so is optimal

for execution of the pipeline. I discuss here the issues in above implementation with respect

to UAV communication framework and how latency introduced can be reduced by building

code at the firmware level instead of running it in the companion computer.

5.6.1 Bottlenecks in performance

Firstly, the image analysis code has to run on the companion computer. However, once

the Initiate Landing signal is set true, the new waypoint as described above is generated

and published to the flight controller, which then commands the navigation module of the

UAV to follow it.

Figure 5.9: Possible architecture for an unmanned vehicle

Since the UAV communication system uses a serial communication protocol, messages are

serially queued and sent to the modules. There is serial communication (MAVLink proto-

col) between Pixhawk and the offboard computer ass can be seen in the image attached
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above. This introduces a lot of latency as the commands are generated in the onboard

computer and sent to the controller from outside.

5.6.2 Generating Landing Commands in Firmware Code

Latency is introduced due to the serialised nature of communication. To resolve that, I

build the code at the firmware level. The idea is that the flight controller is working on

Pixhawk computer which has a very powerful microcontroller and processor (as it handles

many calculations for stabilising the UAV). The flight controller is a controller that is

calculating next waypoint based on current inputs, observations and the set reference

value. Currently, the reference value is set and communicated by mission computer. This

can be instead written in the firmware of the flight controller to switch the reference if it

receives that Initiate Landing is set to true.

Note that the results plots generated above are considering the improvements.

5.6.3 Always hovering above Marker

The UAV is first manually made to hover above the marker, and then allowed to reposition

itself above the center of the marker. Here, I talk about the problem of matching X and Y

coordinates of the UAV with that of the Marker incase the UAV might sway due to wind.

The X and Y position of the Marker obtained from the tvec vector is fed to the flight

controller for repositioning. One inaccuracy that might seep into this is due to GPS

error which can be large at times. Hence instead of allowing drone to get its feed-

back position from the GPS and then redirect to another X Y position (that of the

marker), I directly set the X and Y position of the UAV relative to the marker (when

the marker is visible only then). Hence, now the control problem has changed from

redirecting drone from (XUAV , YUAV ) to (Xmarker, Ymarker) to redirecting drone from

(Xrelative pose from marker, Yrelative pose from marker) to (0,0). It is essentially the same prob-

lem but better as GPS inaccuracies in postion feedback is removed.
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Discussion

6.1 What is this section?

In this section, I want to discuss the error and difficulties faced during implementation of

the project. As my role was predominantly building the software and trying to execute it

on hardware, I faced some integration issues in getting the expected accuracy.

6.2 Motion Capture and Pixhawk Integration

As the drone requires an positioning system for localising itself, we use GPS to enable

it to estimate its own pose. When the drone is powered on, the GPS module tries to

”lock” itself with as many satellites it can so as to ensure better and stable pose feedback.

However, such hardware testing is unfeasible to be conducted outside everytime. Indoors

there is no GPS lock due to obstruction. Hence an external indoor positioning system is

used in the laboratory for conducting experiments which has better accuracy than GPS

feedback.

I used the Qualisys Motion Capture system present in the laboratory to provide pose

feedback to the drone. However, even after carefully following the documentation for

integration of pose feedback from external vision, the drone was not able to get a position

feedback for more than 90 seconds.

31
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This problem was occurring with the Pixhawk autopilot and not with ardupilot system.

This took a lot of time for debugging and I was able to increase the maximum flight time

in position mode from 90 sec to 200 sec, but the problem persited.

6.3 Hardware Actuator Limitation

This was a major bottleneck for continuing the experiments. The linear actuators attached

to the platform were having 2 major issues:

1. There was no z-feedback provided to the actuator control system during roll and

pitch motion. This resulted in the actuators failing and falling down to minimum

stroke position.

2. The stroke length of the current actuators is 15cm. This restricts performing any

possible experiment of estimating heave motion as 15 cm (when ideal) is a lot smaller

than actual conditions of even the calm sea. Hence non-dimensionalising the param-

eters like angular velocity and acceleration reduces them by a very big factor. Hence

actuators of bigger stroke length are needed.

New actuators were ordered two weeks ago and they are yet to arrive. This is why heave

testing and implementation were not possible.

6.4 Drone Frame Optimisation

1. The legs of the drone are too long which increases the chances of slippage and toppling

during landing on a non-stationary platform. Hence, the drone is not optimised with

respect to the frame. Along with this, a lot of extra wires and empty space that

affect the positioning of the CG and add on extra weight.
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Conclusions

Here I discuss the summary of the project. A new feature-based vision system was been

developed and experiments were performed to quantify performance of the vision system

to understand its practicality. Based on the results shown following key conclusions are

drawn:

1. The fiducial based vision system can make precision landing possible on a roll pitch

platform with good accuracy. The only requirement is that the platform should have

well lit area such that marker is visible.

2. The Fractal markers can tolerate 80%-90% occlusion instead of the ArUco fiducial

system which cannot tolerate more than 10% occlusion. Fiducial-based vision system

is accurate in its measurement of position and orientation of the landing pad.

3. Roll or Pitch landing is possible and can be implemented on a large scale by using

a fiducial marker system. Hence any perturbations in sea that result in change

of orientation of ship deck can be handled using the landing protocol logic and is

implementable by using a fiducial based system.

Hence, it is possible to automate and achieve precision landing of an Unmanned Aerial

Vehicle on an oscillating platform with a good accuracy.
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