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1 Problem Description

Machine Unlearning is the problem of forgetting the knowledge of some training examples from
an already learned model. In a Bayesian context, we want to remove the influence of some of the
likelihood terms from the posterior, thereby mitigating the impact of specific training point. The
methods developed in this approach are useful for eliminating outdated, irrelevant or stale data,
de-biasing models or for rectifying inaccuracies.

Figure 1: To remove the contributions of a data point, Du, we can either use unlearning or retrain the
model from scratch. [3]

When users request for the removal of their data, it is reasonable to assume that any contributions
their data may have made to downstream models will also be erased. By doing this, the user’s privacy
is shielded from potential attackers who would try to access it by deducing private user data that was
utilised to train the model.

But, what does it mean to remove a data points contributions? The main idea stands that training the
model again on Dr (Remaining Dataset) would be computationally expensive.

We would be reviewing the algorithm implemented and its performance in the following sections:



2 Literature review and description of prior work on the problem

A framework to identify and nullify erroneous data: Tanno et al. (2022) [1] This was the main
research paper on which our project is based and we have used the overall framework as suggested in
this work while adding the finer details from other sources.

Figure 2: (a)Given the training data and failure set (b) We try to develop an algorithm that learns
causes for failure (c) We repair the model by removing information of failure causes that affects the
model parameters. Reference: This figure is taken from Tanno et al. (2022) [1]

Here, we want explore algorithms that try to identify the causes of failure from the training data and
update the model by erasing the ’memories’ of this harmful data.

Table 1: Notation and Definitions

Notation Definition
D The training dataset
De The erased dataset (De ⊂ D)
Dr The remaining dataset (i.e., Dr ≡ D\De)
θD The parameters of the model trained on D
θDr

The parameters of the model (re)trained on Dr

Θ The candidate set
w(θ) The weight of a candidate θ ∈ Θ

2.1 Step I: Cause Identification

Train & Test: We train a Bayesian model on the available training data (D) and then test it on the
test data. We mark the test points on which the model gave bad answers as F called Failure set.

Update posterior: We then apply a continual learning method to obtain a new posterior

q′(θ) = p(θ|D,F )

This is done by fitting the model on the Failure set F.

Compute influences of training examples on F: We try to numerically quantify the amount of
influence different training points have on the model which resulted in the undesirable behaviour on
the Failure set on the time of deployment. We define such a function r(z) and compute it ∀Z ∈ D

Find failure causes C: We can select the training examples which give the positive value of r(z) and
we put them in one set C which is Failure Causes.

Algorithm 1 Model Repairment
Input: training data D; failure cases F ; approximate posterior q(θ) ≈ p(θ|D); likelihood p(z|θ)
Output: failure causes C, "repaired" posterior q−C(θ)
# Step I: Cause Identification
Update posterior: Apply a continual learning method to obtain q+F (θ) ∝ p(θ|D,F) by fitting the
failure set F
Compute influences of training examples on F: Calculate r(z) ∀z ∈ D (Eq. (9))
Find failure causes C: Return the examples with positive influence, C ← {z ∈ D : r(z) > 0}
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2.2 Step II: Treatment Delete information of C:

Markov Chain Monte Carlo-Based Machine Unlearning: Nguyen et al. (2022) [2]
This the second research paper which we have taken up methods to implement the framework
suggested in the first research work.

This paper focuses on solving supervised learning problems using Bayesian ML models which are
used to capture the conditional probability

p(y|x, θ)

The problem is to remove the effects of a set De of unwanted data (also referred to as erased dataset)
in a model trained on D ⊃ De, by finding an approximation of the model parameters without
involving the costly procedure of retraining the model on Dr = D\De

The proposed solution is based on MCMC sampling method to perform this unlearning.

The basic formulation is as follows - Consider a discrete set Θ which we refer to as the candidate
set of unlearned model parameters. This set Θ is constructed without the knowledge of the erased
dataset De.

We would use MCMC methods to draw samples from the posterior distribution of Θ given D.

Therefore, the candidate set Θ is a set of samples drawn the distribution p(θ|D)

Together with the candidate set Θ, we also store the values

h(θ) = log p(D|θ) + log p(θ)

for all candidates θ ∈ Θ. We also define

g(θ,De) = h(θ) log p(De|θ)

We can make use of these functions to evaluate log p(θ|Dr)

log p(θ|Dr) = log p(Dr|θ) + log p(θ)− log p(Dr) = g(θ,De) log p(Dr)

Recall that Θ is constructed as MCMC samples from the posterior distribution p(θ|D), so we can
assign weight w(θ) to each candidate θ in Θ as follows -

w(θ) =
p(θ|Dr)

p(θ|D)
=

p(Dr|θ)p(θ)p(D)

p(D|θ)p(θ)p(Dr)
=

eg(θ,De)p(D)

eh(θ)p(Dr)

where p(D)/p(Dr) is independent of θ, so it disappears after we normalize the weights for all θ ∈ Θ

We can use this weighted set Θ to approximate the posterior distribution p(θ|Dr).
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3 Novelty of our work as compared to prior work

We have devised a new approach to implement cause identification [1] and then model treatment
[2]. By using the algorithms and methods from the two different papers, we have achieved different
accuracy

We in some sense combined the approaches of the two research works to formulate our final model.
We used the framework of the first model and used MCMC in computing influences of training
examples on F and also in performing the unlearning as suggested in the second paper.

Here is the final procedure we followed:

1. Train and test the Bayesian model and get the Failure set using usual procedures.
2. We train a new model on both the Training Data and the Failure set to get q′() = p(|D,F )

and then calculate r(z)

r̂(z) = (E)p(θ|D)[log p(z|θ)]− (E)p(θ|D,F )[log p(z|θ)]

p(z|θ) = p(y|x, θ)
These expectations are calculated using the MCMC samples.

3. The top K training data points with highest r(z) values are chosen to form Failure Causes C.
This is our De also.

4. We generate samples from the posterior of the original model trained on training data using
MCMC and calculate the corresponding weight w(θ) for each sample of θ using the formula
proposed in the second research paper.

5. We calculated the weighted average of p(y|x, θ) over the samples of θ obtained from MCMC.

Finally, we compare the performance of the original model and the results obtained from the above
procedure on Dr.

4 Description of tools/softwares used

To implement the above said pipeline, we used the following tools:

• PyMC3: A probabilistic programming library for Python that allows users to specify
probabilistic models using an intuitive syntax and then perform Bayesian inference on these
models.

– Probabilistic Programming: PyMC3 allows you to express complex probabilistic
models using a syntax similar to mathematical notation, making it easy to define and
understand Bayesian models.

– Automatic Differentiation: It leverages Theano’s automatic differentiation capabilities
to efficiently compute gradients required for Bayesian inference algorithms like Markov
Chain Monte Carlo (MCMC) and Variational Inference (VI).

– Model Checking and Diagnostics: PyMC3 provides built-in tools for model checking
and diagnostics, allowing assessment of models and inference results.

• Platform: Google Collab
• Python: sklearn, numpy, pandas
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5 Experimental results including description of data

We have provided the links for implementation of Model and Dataset that we used for this project.
Please find them below.
Code Link, Dataset Link

Dataset Description:

We are using the diabetes dataset which is available on Kaggle. The data was originally collected by
the National Institute of Diabetes and Digestive and Kidney Diseases from a set of females at least 21
years old and of Pima Indian Heritage.

The objective is to use the patient information to predict whether or no the patient has diabetes. There
are 8 features (explanatory variables) and 1 label (response variable). This data collected from acutal
patients and represents a task which might commonly be undertaken by a human doctor interested in
identifying the patients most at risk for diabetes in order to recommend preventative measures.

Below are the observations collected after implementing the above mentioned algorithms on the
dataset.

Experimental Results:

• The pipeline is coded and tested on the standard logistic regression modelling of diabetes
data.

• It was observed that accuracy decreased when this pipeline was used. Because of that, Step
1 of the process was reobserved.

• A (0.8, 0.2) train-test split is created on the 768 datapoints(after median imputation), and
50% of the train labels are corrupted. Hence, X_train and corrupted_X_train is created.

• (Accuracy, F1 Score)X_train = (73.38%, 0.55)
(Accuracy, F1 Score)corrupted_X_train = (54.55%, 0.4262)

• Then r̂(z) is calculated, and all the samples with r̂(z) > 0 are demarcated as C. When
cross-checked with the initially corrupted samples, only 60.58% of these corrupted samples
were found in C.

• Removing the influence of C by retraining gives (Accuracy, F1 Score)filtered_X_train =
(70.13%, 0.50), which suggests that this model is better than a pure corruption, but worse
than a fully cleaned model
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6 Calculations

• Use the samples from the Trace Log of original model and calculated the weight of each
sample using the formula :

w(θ) =
1

P(De)

where
P(De) =

∏
P (yi|xi, θ)

In case of Logistic Regression it turns out to be : logit = mean vector × data point vector

P(yi = 1|xi, θ) =
1

1 + exp(−logit)

P(yi = 0|xi, θ) = 1− 1

1 + exp(−logit)

• We calculate the value of P(yi|xi, θ) for all the samples using the same formula and take
the weighted average to get the expected value of yi
In case of logistic regression, P(yi = 1|xi, θ) gives us expected value of yi. If this expected
value comes out to be > 0.5, we assign the final value of yi = 1 else 0.

7 Project Learnings

• The project gave us a hands-on-understanding of implementing basic Bayesian Machine
Learning Models and procedures in code.

• This gave us an route into a fresh field of ML, Machine Unlearning

• This also gave us an idea of how many approximation techniques are actually employed,
with exact examples of situations where each of them are most employable.

8 Possible Future Work

• In this project, we have implemented the algorithm only on Logistic Regression model. We
can try to implement the algorithm on other models. However, during literature review we
felt that output of Linear regression models is a bit uncertain (due to no formal expression
of output), so we went ahead with logistic regression model. One can also extend this to
classification models.

• Different Continual learning methods can be explored for directly fine-tuning the model and
aiming for a more-efficient computation. Examples include using gradient ascent, or using
the previous iteration posterior as prior to compute new posterior in the next iteration.

• Reciprocating the weight allocation relation for training unlearning model would yield
importance metric corresponding for best examples to learn in case of a standard learning
model. This can be explored more for efficient training and getting better accuracies.

9 Work Contribution

Below is roughly the contribution of each member in this project:

Member Contribution
Gaurang Dangayach Implementing Model - Treatment algorithms

Rahul Rustagi Analysis of Model-Treatment Research Paper
Suryanshu Kumar Jaiswal Failure Detection Paper Analysis

Udvas Basak Paper Analysis and Failure Cause Identification Model Implementation
Ujjwal Kumar Failure Detection Paper Analysis
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