Rahul Rustagi

♥ Atlanta, GA 🖾 rustagirahul24@gmail.com 🔗 rrustagi20.github.io in rrustagi7 🗘 rrustagi20

Summary _

Master's candidate at Georgia Tech, specializing in computer vision, sensor integration, and intelligent system design. Developing scalable algorithms that address real-world automation challenges. I am passionate about creating robust, next-generation robotic systems by analyzing how people perceive and make decisions if faced same scenario.

Education

Aug 2024 – May 2026
Aug 2020 – May 2024
Atlanta, GA Jan 2025 – Present
Atlanta, GA Aug 2024 – Jan 2025

• Validated system performance in gazebo simulation on **RotorS** quadrotor and on hardware with **TurtleBot3**, demonstrating robot-agnostic adaptability

Helicopter and VTOL Laboratory – IIT Kanpur, PI: Dr. Abhishek Project Title: Vision-Based Autonomous Quadrotor Landing on Moving Ship	Kanpur, India Aug 2023 – May 2024
 Published a hardware-tested pipeline to predict landing platform 6DoF motion and achieving touchdown, leveraging deep learning for UAV trajectory planning 	
 Used Fractal ArUco markers for estimating platform 6DoF pose at 60Hz using RGB stream from Intel Realsense D435i camera 	
 Deployed a LSTM model on Jetson Nano TX2, integrating TF-TRT & quantization to predict future pose of platform and iteratively predicted future 2 seconds of platform 6DoF pose at 20Hz allowing to plan an optimal landing window time 	
 Applied QP Solver calculating future 2s of optimal time-constrained trajectory way- points in 0.1s for a real safe touchdown 	
 Tested the pipeline by landing a custom medium-duty quadrotor with PX4 autopilot support on a 2PRS-1PRU manipulator emulating ship-wave motion upto seastate 6 	
Wireless Sensor Network and IoT Laboratory , PI: Dr. Rajesh Hegde Project Title: Using RL for traveling towards optimal wireless charging node in IoT network	Kanpur, India Aug 2022 – May 2023
 Designed a reinforcement learning (RL) framework to optimize priority-based charg- ing schedules in low-power IoT networks, addressing energy constraints 	
• Engineered a custom vectorized Gym environment using PyBullet physics to sim- ulate a decentralized network of 10 IoT nodes , enabling parallel training and scalable policy evaluation	
 Benchmarked TD3-PG, DDPG, and PPO algorithms, with TD3-PG outperforming others by converging 20% faster to optimal policies and achieving 35% higher cumulative rewards in sparse-reward environments 	
 Published methodology in IEEE TCAS-II and IEEE WF-IoT, demonstrating applicability to smart city sensor networks and industrial IoT deployments 	
Publications	
Vision-Based Autonomous Ship Deck Landing of Unmanned Aerial Vehicle using Frac- tal ArUco Marker	2025
C Prachand, Rahul Rustagi , R Shankar, J Singh, A Abhishek, K.S. Venkatesh	
10.2514/6.2025-2345 🗹 AIAA SciTech Forum: Unmanned Aerial Systems Track	2024
Lifetime Improvement in Rechargeable Mobile IoT Networks Using Deep Reinforce- ment Learning	2021
Aditya Singh, Rahul Rustagi , Rajesh M. Hegde	
10.1109/TCSII.2024.3370686 🗹 IEEE Transactions on Circuits and Systems II: Express Briefs	2023
Mobile Energy Transmitter Scheduling in Energy Harvesting IoT Networks using Deep Reinforcement Learning	
Aditya Singh, Rahul Rustagi , Surender Redhu, Rajesh M. Hegde	
10.1109/WF-IoT54382.2022.10152078 🗹 IEEE 8th World Forum on Internet of Things	
Robotics Projects	
Multi-Scale Image Restoration & Motion Estimation via Nonlinear Diffusion	2025 – Present
 Developed a Perona-Malik diffusion model with Laplacian pyramid decomposition to enable noise reduction while preserving critical edge details. 	
 Leveraged geometric heat equations to reduce edge blurring by 20%. 	
 Formulated a variational energy functional for optical flow (Horn-Schunck) improving accuracy by 12%. 	

 Deep Learning in Computer Vision Designed a Vision-Language Model using CLIP architecture trained on 20% of CIFAR- 10 dataset using contrastive learning and aggressive augmentation. Implemented SfM using SIFT features & epipolar geometry for 6DoF pose estimation. Reconstructed 3D scene geometry with less than 5% reprojection error using COLMAP. 	CS6476 / GaTech Aug 2024 – Dec 2024
 Perception-Based Intelligent Robot Localization Boosted JetAuto robot localization reliability in dynamic environments by deploying Bayesian sensor fusion (Kalman filter variant), reducing positional drift by 20% under sensor noise. Refined Adaptive Monte Carlo Localization (AMCL) estimates by integrating g20 graph optimization with real-time vision feedback 	Carleton University May 2023 – Dec 2023
Vision-Based Robotic Hand Dexterity using Inverse Kinematics (IK)	IIT Kanpur / Robotics
 Developed an autonomous pipeline for robotic hand object pickup using RGB-D stereo vision and Inverse Kinematics. Implemented SE(3) transformations with tf2_ros and utilized Movelt for end-effector planning. 	Club Mar 2023 – Jul 2023
Vision-Guided Payload Pickup-Delivery using Drone	IIT Madras / Flipkart
 Developed an autonomous ROS pipeline for UAV payload pickup and drop-off. Employed grid-search with QGroundControl and OpenCV for 6DoF pose estimation using ArUco markers. 	GRID 4.0 Nov 2022 – Jan 2023
Positions of Responsibility	
 Graduate Teaching Assistant - CS3630 (Introduction to Perception and Robotics) Handling a total class of 600 students along with 20 other GTA students. Managing 	Jan 2025 – May 2025
Piazza discussion forum and responsible for creating projects and making quizzes for students	
 Using WeBots simulator to create projects on visual navigation and clearing student doubts regarding concepts on bayesian modelling 	
Team Head: Software Aerial Robotics – IIT Kanpur	May 2022 – May 2023
 Awarded Bronze Medal in the Drona Pluto Swarm Challenge and secured a spot in the Final Round of Robotics Flipkart Grid 4.0, among top national teams. 	
 Led and mentored a cross-functional team of 5 members to design, develop, and maintain the software stack for a fleet of custom-built autonomous aerial robots. 	
 Spearheaded full-cycle software development, including real-time control systems, path planning algorithms, and swarm coordination logic for competition-ready UAVs. 	

Technical Skills _____

Robotics Middleware: ROS1/ROS2, Webots, Gazebo, OpenCV, RealSense SDK, PX4, ArduPilot, MAVROS, SITL, HITL

Algorithms & Optimization: VLA Models, YOLO, SfM, ViO, SIFT, ORBSLAM2/3, Segment Anything Model, mIoUs

Programming / Frameworks: Python, C++, TensorFlow, PyTorch, MATLAB, IsaacSim, PyBullet, Eigen, SolidWorks, Movelt