Inter II'T Tech-Meet 11.0

Drona Aviation’s

Pluto Drone Swarm Challenge
Project Documentation

Team ID - 43

8 February 2023



Team ID - 43 2 Installation and Setup Instructions

1 Introduction

This document contains the submission of Team ID 43 for the Drona Aviation’s Pluto Swarm Drone Challenge at
Inter-IIT 11.0. It includes setup instructions and a brief theoretical analysis of the drone’s operating principle, as part of

the Problem Statement.

1.1 Tasks Achieved -

e Task 1 : A self-sufficient wrapper using Python and the MSP Protocol was developed for the provided drone with
required capabilities.

e Task 2 : A Proportional-Integral-Derivative (PID) controller with minimal error was implemented, utilizing the
low-level wrapper from task 1. This allows the drone to automatically move from its initial position to a specified
way-point, which is transformed linearly from the camera frame.

— The drone was successfully made to hover at any given height.

— The drone was appropriately moved in the pattern

e Task 3 : Swarm control of two drones was successfully implemented, with one drone leading and the other following

autonomously.

— The swarm was then configured to follow the same the pattern.
2 Installation and Setup Instructions

2.1 Pre-Installation Assumptions

The following instructions assume that the system has a working installation of Ubuntu 20.04 with Python3 as the default
version. Additionally, the necessary video driver (v412) for the webcam used (0Cam-1CGN-U) have already been installed.

2.2 Installing Dependencies

Install the following additional system dependencies:

$ pip install numpy pyserial
$ sudo apt install libopencv-dev python3-opencv

2.3 Setup Instructions

e Assuming the codebase is present as ~/pluto_ws. To initiate the pose estimation via ArUco marker, run the camera

driver and detection node

$ cd “/pluto_ws/pose_ocam/build
$ cmake .. && make
$ ./ocam 2 # number signifies number of drones ezpected

e For the controller, run controller script in the same workspace in a new terminal

$ cd ~/pluto_ws/pluto_control
$ pip3 install .
$ python3 single.py # or swarm.py

e Extensive logs of all the attributes related to the flight are generated in ~/pluto_ws/pluto_logs/pose.
To view the logs graphically

$ cd ~/pluto_ws/visualizer

$ python3 pose.py ../pose/<log-filename>
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3 Overall Approach and Algorithm Description

3.1 Communication via Wrapper

To use the wrapper, one has to connect to the drone’s internal WiFi hotspot and execute appropriate high-level functions.
In order to communicate with the drone and send commands to it, we use the python pyserial library, which has been
used to open a connection to the drone server.

The wrapper takes in the commands of Arm, Takeoff, Land, set the Roll, Pitch, Yaw and Thrust as well as gets the
altitude from the onboard controller. The protocol sends out packets which are classified as “In” Packets and “Out” Packets
depending on whether the information is supposed is being received from the drone or is being sent to the drone.

Out of the five types of packets mentioned, we have used:

e« MSP_SET_ RAW_RC
e MSP_ALTITUDE

e MSP_SET _COMMAND

For all the below commands, the packet is made by passing the desired parameter values which include the payload and
the type of payload to be converted into a hexadecimal string using an inbuilt python function and subsequently passed
on to another function to be made into a packet and then sent to the server, from where it is read and the changes are
implemented in the drone.

e Arm: Before every flight, the drone needs to be armed. In order to arm the drone, AUX4 of SET RAW RC is set
to 1699 and transmitted continuously for 2 seconds. The required range is between 1300 and 1700.

e Setting Roll, Pitch, Yaw and Thrust: The desired RPYT values are passed and the required packet is made
and sent to Pluto.

e Takeoff: For taking off, we first check if the drone is armed or not. Then, using MSP _SET COMMAND and payload
set to 1, a packet is sent that prepares the drone for takeoff. Using the Alt hold mode in MSP SET RAW RC,
we set the drone to hold its altitude. Finally, packets are sent with the thrust set to 1650 for 5 seconds after which
we set it to the equilibrium thrust (calculated experimentally) and turn off the Alt Hold mode.

e Land: The process of sending the landing packet is similar to the one for Take Off. The payload for MSP_SET COMM-
AND being set to 2 instead of 1 and the thrust set to 1540. We are using alt hold mode to ensure it doesn’t drop
instantaneously and finally disarm the drone.

3.2 Control System

In the following text, we will set up the theoretical formulation for controlling a drone using MPC(Model Predictive
Control) for a limited control problem. The problem specification and the notation to be used is as follows.

xp : The desired position

vp : The required velocity

z : The current position

v : The current velocity

T : The time horizon for the MPC controller

3.2.1 MPC basics

The idea of the MPC controller is simple.
Compute a series of inputs that will minimize the error at time T, then supply the first input in this series at each sampling

instant. This idea will become clearer as we continue this exposition.

3.2.2 The simpler case

Let’s consider the simpler case when we do not need to control the velocity. Define e, = zp — x
According to the principle of the MPC controller, we need to figure out the inputs that will get as close as possible to xp
at time 7. There can be any number of such trajectories or none at all, depending on the case. In this case there can be
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an infinite number of such solutions. Here will choose the simplest of these, the constant acceleration path.
The required acceleration is simple to compute

1
xp =x+vl + i%TQ

Since e, = xp — x, we get
2(ep — vT)
T2
Going back to the MPC view, a series of inputs that causes a constant acceleration a, will take us to xp after the time

Ay —

horizon T'. The analogous case for controlling only velocity, is simple as well. We are stating the solution here

€y
Ay = —
T

3.2.3 Combining the cases

Continuing, suppose we choose a constant velocity per the current strategy constant acceleration, may not work anymore.
This is quite clear since generally a, and a, will not be equal. At this point we need to devise a way to reconcile this
apparent contradiction. One way to deal with the issue is to choose a more interesting strategy, one that can vary the
acceleration so that it may be able to satisfy both the velocity and the position controls.

Let us now formulate the problem a bit differently. Our objective is now to solve the following optimisation problem

argmin |zp — x7|+ |vp — vr|
a

At this juncture, it will serve to be very clear regarding the notation. xp and vp remain the same as before. xp is the
position we expect the drone to be at, if it gets an acceleration a. xp is, obviously, a function of a. It is trivial to simplify
the expression on the right. We will simply write out the final result.

T2
Adesired = argmin 7‘& — aa:‘ + T|a — av|
a

The exact coefficients of the two terms on the right depend on T'. If we were only controlling either position or velocity,
then there is nothing to worry about. But if we are controlling both position and velocity, the two coefficients are equal.
If that is not the case then, we will just get a, or a, as the optimum. The reason is as follows:
The optimum must lie on the line joining a, and a, in the three-dimensional vector space. This is because if there is
an optimum which does not lie on the line, then we can drop a perpendicular on this line from the supposed optimum.
The intersection of this perpendicular and the line will be at least as good as the supposed optimum. So we need only to
consider the points on the line. From here it is trivial to show the truth of the assertion.
when we equate the coefficients, we get T' = 2. The optimum for the expression, is then going to be any point on the line
joining a, and a,.

Qdesired = Az + (1 — X)ay,

A is between [0,1]. While all points on the line connecting a, and a, are solutions, they are not identical. The parameter
A decides the weight given to the two endpoints. A large A will mean a strong position control and a correspondingly weak
velocity control. A small value of A\ will have the opposite effect. Thus

€y

-0

2(e; —vT)
A
3.2.4 Computing the thrust, roll and pitch

We are not controlling the yaw in this problem, thus simplifying the issue greatly. To compute the required thrust, roll
and pitch, we only need to apply the laws of motion.

fZa—mgz =ma

It is once again essential to be clear about the notation. f is the required thrust. z4 is the z — axis for the drone, mg
represents the drone’s weight, z is the z — axis of the ground frame. a is the acceleration computed in the previous section.
So

fZqg =mgZ + ma
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This allows as to compute f and z4, f is the magnitude of the vector in the right and z4 is the direction.
Computing the roll and pitch from here is fairly straightforward. Let R be the rotation matrix that takes the ground frame
to the desired drone frame.

Za = RZ
where
_ yaw pitch roll
cosae —sina 0| | cosp 0 sing| |1 0 0
R=R.(a)R,(B)Ry(y) = |sina cosa 0 0 1 0 0 cosy —sinvy
0 0 1| [—sing 0 cosB| |0 siny cosy

cosacosf  cosasinfsiny —sinacosy cosasin S cosvy + sinasin -y
= |sinacosfB sinasinfsiny + cosacosy sinasinfScosy — cosasiny

—sin g cos Bsin~y cos 3 cosy
with «, # and 7 being the yaw, pitch and roll angles

z is simply [0,0,1]7. #; is known. R has two unknowns, roll and pitch, but yaw is known. Remember that we are not
controlling the yaw, so we do not need to change it. On expanding the right side of the expression, we will obtain two
equations and two unknown which can be easily solved for roll and pitch.

3.2.5 Amending the acceleration

Earlier, we had computed the acceleration to be

+u—n%

2(e; —vT)

Now we will throw in the last bit of complexity. Suppose the desired position xp is not constant, that is, zp # 0 and
Zp # 0. This is not hard to deal with. To deal with p, we will just add p to a. This is essentially to cancel out the
relative acceleration.
To deal with the velocity problem, we can just replace the v with v — zp. It is quite easy to see where this comes from.
We will further simplify it.

€ =Tp—Z

€, =Xp — 0

Substituting it in, we finally get

2(e; +€,T) €y .
€x ey | . €z

This is the final expression for acceleration which will be in the direction of zZ;. Thus, we successfully built a controller
based on the MPC principle using foundational laws. Observe that there are proportional and derivative terms, which are
very elegantly produced.

3.3 ArUco Detection

The main benefit of ArUco markers is that a single marker provides enough correspondence (its four corners) to obtain
the drone pose and orientation. Also, the inner binary codification makes them especially robust, allowing the possibility
of applying error detection and correction techniques. The marker is made such that it is easily identifiable in an image
in various conditions by methods like thresholding, edge detection, segmentation etc. The ID of the marker is identified
by a binary value encoded by the black and white squares that compose the marker. This reliable, fast and continuous
detection feature in image feeds allows ArUco markers to be used in tasks requiring robust coordinate information, like
pose estimation. OpenCV’s ArUco marker detection is an algorithm for detecting ArUco markers.
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Figure 1: Detection of ArUco markers on the drones

There are two major steps that are being followed for detection -

e Pre-processing: The video driver written fetches 8-bit grayscale images from oCam which goes through median
blurring followed by sharpening for highlighting edges and suppressing false possible contours.

e Marker identification: ArUco markers are square-shaped markers with black and white regions arranged in a
specific pattern. The algorithm checks each contour to see if it corresponds to an ArUco marker by analyzing its
shape and the pattern of the black and white regions.

3.4 Pose Estimation

Using this theory, we model the mathematics behind the pose estimation of an ArUco marker involving solving a perspective-
n-point (PnP) problem:

e Image plane to camera coordinate system: Let (x, y) be the image coordinates of a point in the image plane
and (X, Y, Z) be the coordinates of the same point in the camera coordinate system. The relationship between the
image coordinates and the camera coordinates can be described by the following equation:

X:M*Z 7 Y:M*Z

fa: fy

where (cg, ¢y) is the principal point of the camera and (fy, f,) is the camera’s focal length measured in pixels.

e Object points to image plane: Let (X', Y’, Z’) be the coordinates of a point in the marker coordinate system, (R,
T) be the rotation and translation of the marker relative to the camera, and (x’, y’) be the image coordinates of the
same point in the image plane. The relationship between the object points and the image points can be described by
the following equation:

(R[0,0] * X’ + R[0,1] * Y’ + R[0,2] * Z' + T[0])
(R[2,0] * X' + R[2,1] Y’ + R[2,2] x Z' + T[2])

xl:fw* + Cz

(R[L,0] % X' + R[1,1] * Y’ + R[1,2] » Z' + T[1))
(R[2,0] * X' + R[2,1] Y’ + R[2,2] x Z' + T[2])

where R is a 3x3 rotation matrix and T is a 3x1 translation vector.

yl:fy* + ¢y

e Solving PnP: The goal of the PnP solver is to find the rotation and translation (R, T) that minimize the projection
error between the object points and the image points. The projection error can be described by the following equation:

E=Y (V@ =22+ ~v)?)

The PuP solver uses an optimization algorithm to minimize the projection error and find the solution for (R, T),

pose of the marker.
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3.5 Noise Filtering

Before moving to the technical details, we must answer the why. We need filtering because sensors give noisy data, and
this has the effect that the position estimates we obtain from the camera are noisy as well. Graphically the line plot of the
position with respect to time is jagged with abrupt changes, which is problematic. Our controller needs the derivative of
this plot and when we derive this noisy plot, we get a messy function that takes absurd values.

The Linear Kalman Filter (LKF) filters and estimates system states affected by random noise or uncertainty. It helps
Newtonian mechanics-based systems with linear equations. The LKF approach analyses sensor data to estimate an item’s
actual position despite noise or measurement errors. The method forecasts the object’s position at each time step using
a Newtonian physics-based mathematical model and uses sensor data to correct for errors. The LKF algorithm’s system
model implies the object’s acceleration varies linearly between iterations. The item’s velocity and location vary immediately
with the acceleration, which is constant for a short duration. This assumption simplifies LKF approach mathematical
computations, making it more computationally efficient.

LKF uses the anticipated and measured positions to estimate the item’s true position at each time step. The system model
predicts the location, while sensor data measures it. The LKF approach employs “optimal estimation” to combine these
two data sources and find the object’s most likely position. The pseudo-code for the algorithm is as follows:

Algorithm 1 Linear Kalman Filter
InI)Ut : (kalu Pkflu Uk7 Zk7 Fk7 Bkv Qka Hkv Rk:) :
X1 - initial belief vector;

Pi_1 - initial covariance matrix;
U}, - control vector;

Q1 - process noise covariance;
Hj. - observation model;

Ry, - observation noise covariance
Output : (X, Py):

X - final belief vector;

—_
=

P, - final covariance matrix
: P, < Identity Matrix;
: Xy, < Identity Vector

= =
N =

13: repeat

14: Xp,  Fy % X1 + By« Ug > Prediction Step
15: pk%Fk*Pkfl *FTk+Qk

16: K(—pk*HTk*(Hk*Pk*HTk—FRk)_l > Update Step
17: XkFXk*K*(Zk—Hk*Xk)

18 P, <+ Py — K% Hy, * Py

19: until end of input

20: Publish X; and P

(a) Unfiltered (b) Filtered
Figure 2: Z-Coordinate Estimates

In this, we can observe that the first graph is much more jagged and noisy than the second. This is what Kalman filters
do for us: Cut the noise.
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3.6 Bringing it all together

The ceiling camera detects the corners of the ArUco marker and evaluates the drone’s current attitude. It reports the same
to the ground station which applies Kalman filter to each of the coordinates individually to decrease noise. The data is
then processed by the MPC controller, which sends roll, pitch, yaw, and thrust to the drone via the MSP protocol.

3.6.1 Setting up the Swarm Control

The initial step in connecting the 2 Pluto drones with the same ground station is to change from Mode 2 to Mode
3 which is a combination of AP and STA modes. The STA mode allows all the drones to connect to a WiFi to which
the ground station is connected. Also, the drones are assigned a static IP for communication. We always opted for Mode
3 (STA + AP) so that the connection to the drone isn’t permanently lost because the connection of the ESP module of
the router is very unstable. It fails to automatically connect to the router on startup and needs reconfiguration on every
reboot. The process to configure the drones for the swarm is:

$ telnet 192.168.4.1 23 # establishing connection to the drone
+++AT MODE 3 # setting to (AP + STA) mode

+++AT STA <SSID> <PASSWORD> # sstd and password of the WiF3
+++AT SETIP <IP> # assign the desired static IP

Talking about the overall software architecture, we have two important processes.

e ArUco detector & Position Estimator (backend): Written in C++, this process is tasked with taking the
camera feed at high frames per second as input and segmenting out the ArUco marker. As segmenting the images for
ArUco detection is intensive, the process itself has been threaded for minimizing loss of fps drop due to computation.
One thread takes the image input from the camera and writes it to a shared global variable. The second thread
handles processing task by detecting ArUco markers (on image currently stored in the shared variable), estimates
the raw pose and sends it to the controller node via socket communication in which this node acts as a client.

e Controller Node (frontend): This node is written in python and acts as a server for the socket communication.
It receives the raw position from the backend, applies kalman filter to it for smoothening, uses the control theory
mentioned above to calculate the desired Roll, Pitch, Yaw and Thrust and sends it to the drone using the MSP
protocol.

e Swarm Node: Controlling both drones at the same time poses synchronization problems. A simple solution is to
run two controller threads independently. This is not enough, however since both drones need to traverse the circuit
in sync. We set up a locking mechanism which communicated across threads. Each drone would latch onto its current
position until the other drone also reached the designated waypoint. Only then would both the drones be allowed
to proceed forward. The overall architecture involves a parent thread, which creates two children each of which is
assigned to a particular drone.

We also extensively logged the data from every flight, which enabled us to fix bugs, tune parameters and glean information
about the drone. Below is an example of the logs from one of the hovering flights:

e p_x e d x eix
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(a) Graphs of Proportional, Derivative and Integral Errors
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Figure 3: Graphical Logs

Experimental Setup

The experimental setup is comprised of a ground station, a camera attached to the ceiling and a Pluto drone with an

ArUco marker attached onto it.

(a) Ground Station connected to the Camera (b) Camera duct taped to the ceiling (c¢) Drone with ArUco attached

3.8

Figure 4: Experimental Setup

Problems Faced

While working on the given drone, the team faced many issues and difficulties, which taught us a lot about handling drones.

This included issues involving both hardware and software. The problems varied from broken propellers to noisy data from

the camera:

High Agility with difficult Control: The drone has exceptional maneuverability, making controller design and
parameter tuning challenging. To tackle this challenge, the team designed an MPC controller that is very agile yet
stable and has attributes quite similar to a PID controller.

Noisy data and low feedback frequency: The drone’s location was determined using an oCam camera with a
detection rate of 30 Hz. However, this data was highly inaccurate with significant spikes, as seen in the logs. To
resolve this, a Kalman filter was employed to produce smoother data for improved drone control.

Variation of Thrust with Voltage: When flying the drone, it was noticed that the resulting thrust was influenced
by both the published thrust and the battery voltage. To address this issue, we factored in the effect of battery
voltage on thrust and updated the published equilibrium thrust accordingly.

Fish-Eye Camera and low FOV: The challenge was to cover an extensive route and thus, a camera was needed
that could cover the whole path. The team opted for a Fish-eye camera, which resulted in distorted and low image
quality, but allowed for coverage of the entire track. This problem of the fish-eyed camera was partially sorted by
using a code for undistorting the image. However, this issue caused an error in the y coordinate, thus leading to
slight inaccuracy in the calculation of the height of the drone.
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